\begin{tabbing} $M_{1}$ $\subseteq$ $M_{2}$ \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=1of($M_{1}$) $\subseteq$ 1of($M_{2}$) \& 1of(2of($M_{1}$)) $\subseteq$ 1of(2of($M_{2}$))\+ \\[0ex]\& \=1of(2of(2of($M_{1}$))) $\subseteq$ 1of(2of(2of($M_{2}$)))\+ \\[0ex]\& 1of(2of(2of(2of($M_{1}$)))) $\subseteq$ 1of(2of(2of(2of($M_{2}$)))) \\[0ex]\& 1of(2of(2of(2of(2of($M_{1}$))))) $\subseteq$ 1of(2of(2of(2of(2of($M_{2}$))))) \\[0ex]\& 1of(2of(2of(2of(2of(2of($M_{1}$)))))) $\subseteq$ 1of(2of(2of(2of(2of(2of($M_{2}$)))))) \\[0ex]\& 1of(2of(2of(2of(2of(2of(2of($M_{1}$))))))) $\subseteq$ 1of(2of(2of(2of(2of(2of(2of($M_{2}$))))))) \\[0ex]\& 1of(2of(2of(2of(2of(2of(2of(2of($M_{1}$)))))))) $\subseteq$ 1of(\=2of(2of(2of(2of(2of(2of(2of(\+ \\[0ex]$M_{2}$)))))))) \-\\[0ex]\& 1of(\=2of(2of(2of(2of(2of(2of(2of(2of(\+ \\[0ex]$M_{1}$))))))))) $\subseteq$ 1of(2of(2of(2of(2of(2of(2of(2of(2of($M_{2}$))))))))) \-\\[0ex]\& 1of(\=2of(2of(2of(2of(2of(2of(2of(2of(2of(\+ \\[0ex]$M_{1}$)))))))))) $\subseteq$ 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of($M_{2}$)))))))))) \-\\[0ex]\& 1of(\=2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(\+ \\[0ex]$M_{1}$))))))))))) $\subseteq$ 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of($M_{2}$))))))))))) \-\-\- \end{tabbing}